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Abstract
We investigate the influence of an external voltage V0 on conductance G
through a quantum dot (QD), which is side-coupled to a quantum wire of
length LW, whose two ends are weakly connected to leads. In our calculation,
the poor man’s scaling law and slave-boson mean-field method are employed.
With V0 increased, a series of resonant regions is formed and G exhibits
different properties in and out of these regions, which is the universal result
of the finite-size effect on the Kondo correlation. In symmetric structures, the
would-be resonant regions corresponding to odd wavefunctions are removed.
If the symmetry is broken by changing the QD position, those regions will
be recovered. In two asymmetric structures with their wire lengths being
LW and LW + 1, respectively, the two sets of resonant regions intersect with
each other. These symmetry-related phenomena characterize side-coupled QD
structures. With the barrier width increased, the number of resonant regions is
increased, too.

1. Introduction

With the development of nanofabrication techniques, the interplay between electronic
correlation and finite-size effect has attracted a lot of attention in the mesoscopic physics.
When a quantum dot (QD) is connected to metallic leads, the coupling between the localized
spin on the dot and conduction electrons results in the Kondo correlation, which is described by
an energy scale TK, the so-called Kondo temperature. If a dot is in the Kondo regime [1–5], the
localized spin and conduction electrons form a spin singlet state, which yields the Abrikosov–
Suhl resonance and profoundly affects the electronic transport. The dynamical correlation
length of the spin singlet is related to TK by ξK = h̄vF/TK, with vF the Fermi velocity [6].
However, if the dimension of a QD structure is shorter than ξK, the effective Kondo temperature
TK will deviate from the bare one (below, we use T (0)

K and ξ (0)K to denote the bare characteristic
scales), and at this time the finite-size effect plays an important role [7–13].
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Figure 1. Schematic illustration of the structure.

Recently, Simon and Affleck have studied the transport properties of a structure where a
QD is embedded in a quantum wire (QW), whose two ends are weakly connected to external
leads [12]. Due to the finite wire length LW, the local density of states (LDOS) of conduction
electrons seen by the localized electron on the dot ρs(ω) has a series of peaks. If the peak
distance � > T (0)

K , a great difference (usually several orders in magnitude) can be found
between T (R)

K and T (NR)
K , which are the corresponding TK with the Fermi energy εF being

resonant and non-resonant with LDOS peaks, respectively [11, 12]. This point can be seen
clearly from the poor man’s scaling law (PMSL) [14]. By applying a gate voltage on the wire,
whether the structure is in or out of resonant regions can be artificially adjusted.

Although they are obtained from embedded QD structures, it looks reasonable that these
results can also be found in a structure with the QD side-coupled to the wire. Of course, this
point needs to be clarified. Meanwhile, in embedded QD structures, with the Kondo coupling
J approaching zero, the wire is effectively cut into two parts, and with J increased the two parts
are merged together, which leads to the doubling of the number of resonant regions when T (0)

K
is enhanced from much smaller to much larger than �. Obviously, this phenomenon cannot
be found in side-coupled QD structures. What characterizes the transport property through a
side-coupled QD structure is a question that need to be answered. Furthermore, in [12], the
gate voltage is assumed constant over the whole wire. If an external voltage V0 is applied on
the wire to form a potential barrier, with its width being shorter than LW, what is the difference
between this situation and that with constant gate voltage? The purpose of the present paper
is to resolve these three problems.

For this reason, we assume a structure illustrated schematically in figure 1, obtain TK

qualitatively from PMSL [14], treat the Kondo correlation via the slave-boson mean-field
(SBMF) method of Kotliar and Ruckenstein (KR) [15–17] and calculate the conductance G
through the structure by the Landauer–Büttiker formula. With V0 increased, a series of resonant
regions is found, where Kondo-assisted tunnelling yields very small G values. Outside these
regions, intrinsic structure of G is found due to the scattering at interfaces between the wire and
leads. Here, the practical temperature T satisfies the relation T (NR)

K � T � T (R)
K . This is the

universal result of the finite-size effect on the Kondo correlation. Consider the situation where
the wire contains an odd number of sites: if the QD is side-coupled to the symmetric site the
would-be resonant regions corresponding to odd wavefunctions are removed, but if the dot is
side-coupled to one other site the symmetry is broken and those regions are recovered. In two
asymmetric structures with their wire length being LW and LW +1, respectively, the two sets of
resonant regions intersect with each other. These symmetry-related phenomena characterize
side-coupled QD structures. With V0 constant over the wire, the ρs(ω) curve moves rigidly. If
a potential barrier is formed in the wire, with its effective width being shorter than LW, some
peaks in the ρs(ω) curve are diminished and removed with V0 increased, so that the number of
resonant regions is decreased.
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The organization of this paper is as follows. In section 2, the theoretical model and
calculation method are illustrated. In section 3, the numerical results and the discussion on
them are presented. A brief summary is given in section 4.

2. Model and formulas

In the present paper, we investigate the transport property of a QD, which is side-coupled to
a short quantum wire, and study the influence of external voltage on its conductance. The
structure is schematically illustrated in figure 1, where one dot, with a single-particle energy
level εd and an on-site Coulomb interaction U , is connected to the QW by hopping integral
td . The length of the QW is LW, whose two ends are weakly connected to leads via tunnelling
matrix element tL. This mesoscopic system can be described by the following one-dimensional
(1D) tight-binding Hamiltonian:

H = HL + HW + HD + HLW + HDW, (1)

where the subscripts L, W and D stand for lead, wire and dot, respectively. Here

HL = −t

[ −1∑
i=−∞,σ

+
∞∑

i=LW+1,σ

]
(c†

iσ ci+1σ + H.c.), (2)

HW =
LW∑

i=1,σ

Vi c
†
iσ ciσ − t

LW−1∑
i=1,σ

(c†
iσ ci+1σ + H.c.), (3)

HD = εd

∑
σ

c†
dσ cdσ + Und↑nd↓, (4)

HLW = −tL
∑
σ

(c†
0σ c1σ + c†

LWσ
cLW+1σ + H.c.) (5)

and

HDW = −td
∑
σ

(c†
dσ csσ + H.c.). (6)

Here ndσ = c†
dσ cdσ , with σ = ↑ or ↓, and the QD is connected to site s. The external

voltage forms a potential barrier, and its centre coincides with the central site ‘c’ of the wire
Vi = V0/ cosh2( i−c

LB
), with c = (LW + 1)/2. Here, the barrier tail in leads is neglected. As

a comparison, the situation with constant external voltage Vi = V0 is also considered in this
paper.

When the dot is decoupled from the QW, the LDOS on site s can be obtained easily:

ρs(ω) = − 1

π
Im〈vac|cs[ω + iγ − (HL + HW + HLW)]

−1c†
s |Vac〉, (7)

where i = √−1, γ is introduced to denote the half width at half maximum of the spectrum
lines in LDOS and |Vac〉 is the vacuum state. Due to the spin degeneracy, the spin subscript is
omitted in the above formula. When the QD is coupled with the QW, the correlation interaction
plays an important role, and TK can be obtained qualitatively from PMSL [12, 14]:

d J

d ln(D0/ω)
= ρs(ω)J

2, (8)

where D0 = 2t is the original bandwidth, and the corresponding unrenormalized Kondo
coupling is J0 = 2t2

d

(
1

−εd
+ 1
εd +U

)
. TK is defined as the specific ω value where the renormalized

J equals unity. If LW → ∞ and V0 = 0, T (0)
K = D0 exp(−1/λ), with λ = J0/(2π t). This
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expression is a little different from the exact one [6], but as a qualitative result, it is good
enough.

To solve the Hamiltonian (1), we adopt the SBMF theory of KR [16, 18], which is
a powerful nonperturbative tool to study the strongly correlated fermion system, and can
give qualitatively correct results when the Kondo correlation is dealt with [10, 15]. In the
framework of this approach, four auxiliary boson fields e, pσ and d are introduced, which
act as projection operators onto the empty, singly occupied and doubly occupied electronic
states at the QD, respectively. To eliminate the unphysical states, three constraints have to
be imposed:

∑
σ p†

σ pσ + e†e + d†d = 1 and c†
dσ cdσ = p†

σ pσ + d†d . To obtain correct
result in the noninteracting limit, the fermion operator cdσ should be replaced by cdσ zσ , with
zσ = (1−d†d − p†

σ pσ )−1/2(e† pσ + p†
σ̄d)(1−e†e− p†

σ̄ pσ̄ )−1/2. Therefore the Hamiltonian (1)
can be replaced by the following effective Hamiltonian:

Heff = HL + HW + H̃D + HLW + H̃DW + λ(1)
(∑

σ

p†
σ pσ + e†e + d†d − 1

)

+
∑
σ

λ(2)σ (c
†
dσ cdσ − p†

σ pσ − d†d), (9)

where the three constraints are incorporated by the Lagrange multipliers λ(1) and λ(2)σ . The
original HD and HDW are replaced by

H̃D = εd

∑
σ

c†
dσ cdσ + Ud†d (10)

and

H̃DW = −td
∑
σ

(z†
σ c†

dσ csσ + H.c.), (11)

whereas HL, HW and HLW remain unchanged.
To solve the effective Hamiltonian (9) at finite temperature, we first replace the slave

boson fields by their expectation values, then obtain the values of e, pσ , d , λ(1) and λ(2)σ by
minimization of the corresponding free energy of the essentially noninteracting Hamiltonian (9)
with respect to these parameters [17]. This is equivalent to the approach using the functional
integral method combined with the saddle-point approximation, and leads to a set of self-
consistent equations [16, 17]:

e2 + 2 p2 + d2 = 1, (12)∑
m

nF(εm)〈m|c†
d cd |m〉 − p2 − d2 = 0, (13)

−2td
∑

m

nF(εm)〈m|c†
dcs + H.c.|m〉 ∂z

∂(e2)
+ λ(1) = 0, (14)

−td
∑

m

nF(εm)〈m|c†
dcs + H.c.|m〉 ∂z

∂(p2)
+ λ(1) − λ(2) = 0 (15)

and

− 2td
∑

m

nF(εm)〈m|c†
d cs + H.c.|m〉 ∂z

∂(d2)
+ λ(1) − 2λ(2) + U = 0, (16)

where nF(εm) is the Fermi distribution function nF(εm) = 1/(1 + eβ(εm−εF)), with β = 1/T
the inverse temperature. In the present paper, we always set εF = 0. Because of the spin-
degeneracy, only five variational parameters are independent. They are e, p, d , λ(1) and λ(2).
Based on the same reason, in writing the above self-consistent equations, the spin notations of
fermion operators are omitted.
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To self-consistently solve these equations, we have to calculate the expectation values
such as 〈m|c†

j ci |m〉, with |m〉 the single-particle eigenstate corresponding to a certain set of
variational parameters, then update the variational parameters from the above self-consistent
equations, and repeat these two steps until numeric convergence is reached. The introduction
of an external voltage makes it not easy to write analytic expressions of those expectation
values, and they are obtained via numeric calculations. In practical calculations, the numeric
diagonalization can be performed only in a finite cluster. Here, the QW, together with the
side-coupled QD, is located at the centre of the cluster. At zero temperature, if the cluster size
is much larger than ξK, the results obtained from the cluster calculation should be identical
with those from the original system [8, 10]. Whereas at finite temperature, the required cluster
size is relative short compared with that at zero temperature.

As soon as the five variational parameters are obtained, the conductance G through the
structure can be obtained from the Landauer–Büttiker (LB) formula:

G = 2
∫

−∂nF(ε)

∂ε
|Tr(ε)|2 dε, (17)

since the effective Hamiltonian (9) is essentially noninteracting [20]. Here, the factor 2
accounts for the spin degeneracy and Tr(ε) is the transmission coefficient of an incident electron
with energy ε. For the effectively noninteracting tight-binding Hamiltonian (9), Tr can be
calculated straightforwardly from the transfer matrix (TM) method [9, 12, 19].

3. Results and discussion

In the following calculation, we always set t = 1, εd = −0.7, U = 1.4, td = 0.5, tL = 0.5,
T = 10−3 and γ = t2

L/(2LW). Consequently, T (0)
K = 2.46 × 10−2 and ξ (0)K = 81.3. When the

dot is side-coupled to the wire, to take the Kondo correlation into account, in calculating G, the
total cluster size is set as 600, which is much longer than ξ (0)K . Although ξK is usually different
from ξ

(0)
K , at T = 10−3, this cluster size can always guarantee the numeric convergence.

Whereas in calculating ρs with the dot decoupled, a cluster with 2000 sites is diagonalized to
guarantee the smoothness of obtained curves. In the present paper, three different situations
are considered. (i) LW = 19 and the QD is side-coupled to the site s = 10. This situation is
symmetric in structure and is labelled as ‘LW19s’. (ii) LW = 20 and s = 10. This situation is
labelled as ‘LW20’. (iii) LW = 19 and s = 9. We label it as ‘LW19a’. In the second and third
situations, the structure is asymmetrical.

Figures 2(a)–(c) illustrate the variations of ρs(εF), TK and G versus V0, respectively, with
LB = 5. In ‘LW19s’, two high peaks appear in the ρs(εF)–V0 curve, and a low one is located
at V0 ∼ 2.35t . Correspondingly, TK also shows two high peaks in the two major resonant
regions, with their peak values T (R)

K ∼ 0.010 and 0.016, respectively, and a low one, about
7.7 × 10−6. In the non-resonant regions, T (NR)

K ∼ 2.1 × 10−10, 1.1 × 10−7 and 4.0 × 10−8

at the tips. Here, linear–log axes are used to plot the TK and G curves. In figure 2(b), the
position of T is noted as a horizontal line, and as we can see the relation T (NR)

K � T � T (R)
K

is satisfied. Consequently, in the resonant regions, the Kondo-assisted tunnelling plays an
important role, and G takes a very small value since the QD is side-coupled to the wire [21].
In the non-resonant regions, the electronic interaction is perturbative, and G exhibits intrinsic
structure caused by the scattering at the interfaces between the wire and leads. Meanwhile, a
shallow dip related to the low ρs(εF) peak is found in the G curve.

With V0 = 0, � ≈ 0.63 in the vicinity of the Fermi surface (cf figure 3(a)), and this

value is much larger than T (0)
K . Under this condition [12], T (R)

K ≈ δ
( T (0)

K
D0

)t2
L sin2 kn/t2

, and
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Figure 2. Variations of ρs(εF) ((a) and (d)), TK ((b) and (e)) and G ((c) and (f)) versus V0 for
‘LW19s’ (solid), ‘LW20’ (dashed) and ‘LW19a’ (dotted). In (a)–(c), LB = 5, and in (d)–(f), V0
is constant over the whole wire. The other parameters are t = 1, εd = −0.7, U = 1.4, td = 0.5,
tL = 0.5, T = 10−3 and γ = t2

L/(2LW). In (b) and (e), horizontal lines denote the T position.

Figure 3. Evolution of ρs(ω) at zero temperature with LB = 5 (a) and constant V0 over the whole
wire (b). From bottom to top, V0 increases from zero to 2.5 with an interval 0.5. Each curve is
offset by two units. γ = t2

L/(2LW), with the same other parameters as in figure 2.

T (NR)
K ≈ �

( T (0)
K
D0

)t2/(t2
L sin2 kn), with δ the half width at half maximum of the LDOS peak, which

can also be obtained from figure 3(a) as δ ∼ 0.059. Consequently, T (R)
K and T (NR)

K calculated
from the above analytic expressions are about 0.019 and 1.4×10−8, respectively. (Here, sin kn

is assumed to be unity.) The corresponding TK values estimated from our numeric results are
in qualitative consistence with these analytic ones. These results prove the universal influence
of the finite-size effect on the Kondo correlation, no matter whether the considered structure
is an embedded or side-coupled QD system. Now, we focus our attention on the special
characteristics of side-coupled QD structures.

In resonant regions, |Tr|2 is close to unity in embedded QD structures, whereas it is
close to zero in side-coupled QD structures, at finite temperature. Besides this well known
difference [21], some new characteristics are found in side-coupled QD structures with the
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symmetry broken. In the situation ‘LW20’, the number of major resonant regions is doubled,
from two to four, although LW is only changed by one compared with the situation ‘LW19s’.
In the third situation, the number of major resonant regions is also turned from two to four.
In this situation, the wire length is even unchanged, and the only difference is the asymmetry
introduced by the change of the dot position. The doubling of the number of resonant regions is
a common characteristic of asymmetric structures. (As in ‘LW19s’, a low peak of ρs(εF), and
a shallow dip of G, can be found in V0 > 2 in both of these two situations.) On the other hand,
some difference can be found between these two asymmetric situations. In ‘LW20’, the four
major resonant regions are all located in the areas corresponding to the valleys of ‘LW19s’,
whereas in ‘LW19a’, in the four major resonant regions, two appear in the same areas as the
resonant regions of ‘LW19s’, and the other two appear in the valleys of ‘LW19s’. The two sets
of resonant regions of ‘LW20’ and ‘LW19a’ intersect with each other.

What is the underlying reason that accounts for the above symmetry-related phenomena?
With V0 = 0, if the wire is decoupled from the dot and disconnected from the leads, the
energies and wavefunctions of eigenstates are εn = −2t cos(kn) and ψn(i) = An sin(kni),
respectively, with kn = πn/(LW +1) and An the renormalization factor. The energy separation
between consecutive eigenstates is 2π t sin(kn)/(LW + 1), which is also the� value in the two
asymmetric situations. However, in the situation ‘LW19s’,� = 4π t sin(kn)/(LW +1), because
the wavefunction varies alternately between even and odd functions, and the site ‘10’ is the
node of odd functions. This halving of � can interpret the number doubling of resonant
peaks. In figure 3(a), the evolution of ρs(ω) with V0 is plotted for the situation ‘LW19s’.
With V0 increased, the ρs(ω) curve moves towards the positive ω direction, which yields a
series of peaks in the ρs(εF)–V0 curve. Similar processes are also found in the two asymmetric
situations. But since the peak number of the ρs(ω) curve is doubled, the resulting resonant
region number of the ρs(εF)–V0 curve is also doubled.

As we have said, some difference can be found between the situations (ii) and (iii),although
both of them are asymmetric. From kn = πn/(LW + 1), it can be seen that the energy levels of
‘LW19a’ and ‘LW20’ intersect with each other. This is reflected in the variations of ρs(ω), and
consequently, ρs(εF), TK and G. In the ρs(εF) curve of ‘LW19a’, a new high peak is located at
V0 = 0, but the next peak is greatly suppressed compared with its counterpart in the symmetric
structure. This can be understood easily from the eigenfunction form ψn(i) = An sin(kni).
The eigenenergy level corresponding to εF = 0 is k10 = π/2. Its two nearest-neighbour ones
are k9 = 9π/20 and k11 = 11π/20, which are close to π/2. At site 10 | sin(kni)|2 = 1 with
n = 9 or 10, whereas at site 9 it is greatly reduced. This accounts for the suppression of the
second peak in the ρs(εF)–V0 curve.

In figures 2(d)–(f), the variations of ρs(εF), TK and G are given in the three situations under
an external voltage which is constant over the whole wire. As expected, the resonant regions of
the ρs(εF)–V0 curve have one-to-one correspondence with the TK peaks. In these regions, the
transport is Kondo assisted, and G shows deep dips. Out of these regions, intrinsic structures
are found in G due to the scattering at the interfaces between the wire and leads. Here, the
relation T (NR)

K � T � T (R)
K is also satisfied. Compared with the results of LB = 5, the number

of resonant regions is increased. When V0 exceeds two, the low ρs(εF) peak found in structures
with LB = 5 does not appear, and G decreases rapidly. In figure 3(b), the evolution of the ρs(ω)

curve with V0, which is constant over the whole wire, is plotted for the situation ‘LW19s’. As
we can see from the comparison between figures 3(a) and (b), for the case with constant V0

the curve moves almost rigidly, and when V0 > 2 all of the original five peaks below ω = 0
pass through the Fermi surface, which results in five peaks in the ρs(εF) curve. As V0 further
increases, the tunnelling through the wire is exponentially depressed, and G decreases rapidly.
However, the case with LB = 5 displays a different scenario. With V0 increased, the ρs(ω)
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curve also moves towards the positive ω direction, but its speed is slow, and when V0 = 2,
some peaks have not passed the Fermi surface. Besides this, in the case with LB = 5, the
movement is not rigid. With V0 increased, the left-most peak is diminished and removed, then
the new left-most peak undergoes the same process, until all surviving peaks pass εF = 0. As
a result, in the ρs(εF) curve, only two major peaks appear, and the low peak originates from
a diminished left-most peak in the evolution of the ρs(ω) curve. The difference between the
cases with LB = 5 and constant V0 comes mainly from their different barrier widths. With the
effective barrier width increased, the tunnelling above V0 = 2 is exponentially diminished, the
number of resonant regions is increased, and the results is more and more close to those with
constant V0.

In the ρs(ω) curve, the outmost peaks have narrower widths than the inmost ones. For
example, δ = 0.0065 in the left-most peak at V0 = 0. This width is about one-tenth of the
peak in the vicinity of the Fermi energy. However, the peak values of TK in different resonant
regions have the same order in magnitude. This explains why clusters with different sizes are
used in calculation of TK (or ρs(ω)) and G.

4. Summary

In summary, we investigate the influence of an external voltage V0 on conductance G through
a QD, which is side-coupled to a quantum wire of length LW, whose two ends are weakly
connected to leads. To treat this problem, the PMSL and the SBMF method of KR are
employed. With V0 increased, a series of resonant regions is formed. If the relation

T (NR)
K � T � T (R)

K is satisfied, Kondo-assisted tunnelling leads to very small G values
in resonant regions, whereas intrinsic structures of G are found in non-resonant regions due
to scattering at interfaces between the wire and leads. This is the universal result of the finite-
size effect on the Kondo correlation. Consider the situation where the wire contains an odd
number of sites: if the QD is side-coupled to the symmetric site the would-be resonant regions
corresponding to odd wavefunctions are removed, but if the dot is side-coupled to one other
site the symmetry is broken and these regions are recovered. In two asymmetric structures with
wire length LW and LW + 1, respectively, the two sets of resonant regions intersect with each
other. These symmetry-related phenomena characterize side-coupled QD structures. With V0

constant over the wire, the ρs(ω) curve moves rigidly. But if a potential barrier is formed in
the wire, with its effective width being shorter than LW, some peaks in the ρs(ω) curve are
diminished and removed, so that the number of resonant regions is decreased.
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